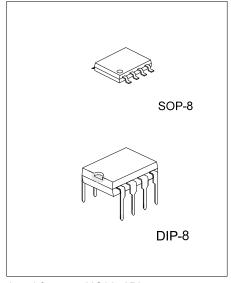


UC3842B/3843B

LINEAR INTEGRATED CIRCUIT

HIGH PERFORMANCE CURRENT MODE CONTROLLERS


DESCRIPTION

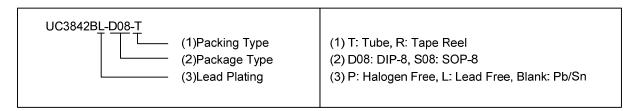
The UTC **UC3842B/3843B** are specifically designed for off-line and dc-to-dc converter applications offering the designer a cost-effective solution with minimal external components.

The **UC3842B** has UVLO thresholds 16V (on) and 10V(off), ideally suited for off-line converters. The **UC3843B** is tailored for lower voltage applications having UVLO thresholds of 8.4V(on) and 7.6V(off).

■ FEATURES

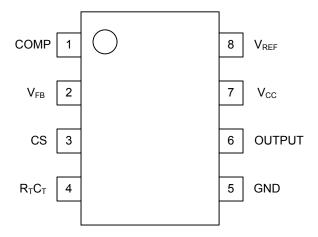
- * Trimmed oscillator for precise frequency control
- * Oscillator frequency guaranteed at 250kHz
- * Current mode operation to 500kHz
- * Automatic feed forward compensation
- * Latching PWM for cycle-by-cycle current limiting
- * Internally trimmed reference with undervoltage lockout
- * High current totem pole output
- * Undervoltage lockout with hysteresis
- * Low startup and operating current

Lead-free: UC3842BL


UC3843BL

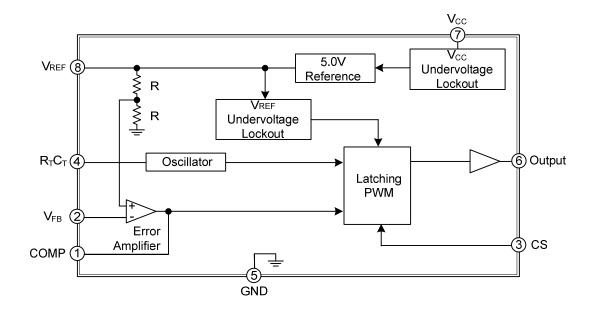
Halogen-free: UC3842BP

UC3843BP


■ ORDERING INFORMATION

	Dookogo	Dooking			
Normal	Normal Lead Free		Package	Packing	
UC3842B-D08-T	UC3842BL-D08-T	UC3842BP-D08-T	DIP-8	Tube	
UC3842B-S08-R	UC3842BL-S08-R	UC3842BP-S08-R	SOP-8	Tape Reel	
UC3843B-D08-T	UC3843BL-D08-T	UC3843BP-D08-T	DIP-8	Tube	
UC3843B-S08-R	UC3843BL-S08-R	UC3843BP-S08-R	SOP-8	Tape Reel	

<u>www.unisonic.com.tw</u>


■ PIN CONFIGURATION

■ PIN DESCRIPTIONS

PIN NO.	PIN NAME	I/O	DESCRIPTION
1	COMP	0	Error amp output to provide loop compensation maintaing V _{FB} at 2.5V
2	V_{FB}	I	Error amp inverting input, The non-inverting input of error amp is 2.5V band gap reference
3	CS	I	Current sense input to PWM control gate drive of output
4	R_TC_T	I	To set oscillator frequency and maximum output duty cycle
5	GND		Power ground
6	OUTPUT	0	To direct drive power MOSFET
7	V _{CC}		Power supply
8	V_{REF}	0	5V regulated output provides charging current for C _T through R _T

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS(Ta=25°C)

PARAMETER			RATINGS	UNIT
Total Power Supply and Zener Current		$(I_{CC} + Iz)$	30	mA
Output Current, Source or Sink (note1)		lo	1.0	Α
Output Energy (capacitive load per cycle)		W	5.0	μJ
Current Sense and Voltage Feedback Inputs		V_{IN}	-0.3 ~ +5.5	V
Error Amp. Output Sink Current		I _{O(SINK)}	10	mA
DIP-8		В	1250	mW
Power Dissipation	SOP-8	P_D	702	mW
Operating Junction Temperature		TJ	+150	°C
Operating Temperature		T _{OPR}	0 ~ +70	°C
Storage Temperature Range		T _{STG}	-65 ~ + 150	°C

Note Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Thermal Desistance Investigate Ambient	DIP-8	θ_{JA}	100	°C/W
Thermal Resistance Junction to Ambient	SOP-8		178	°C/W

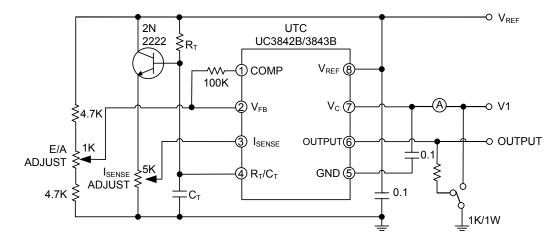
■ ELECTRICAL CHARACTERISTICS

 $(0^{\circ}\text{C} \le \text{T}_{A} \le 70^{\circ}\text{C}, \text{V}_{CC} = 15\text{V} \text{ [note 2]}, \text{R}_{T} = 10\text{k}, \text{C}_{T} = 3.3\text{nF}, \text{unless otherwise specified)}$

(0 C 3 1 A 3 1 0 C, VCC - 13 V [110te 2],	11 -10K, O -	-5.5m , uniess ouierwise specified)				
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
REFERENCE SECTION						
Output Voltage	V_{REF}	Io=1.0mA, T _J =25°C	4.9	5.0	5.1	V
Line Regulation	ΔV_{LINE}	V _{CC} =12V ~ 25V		2.0	20	mV
Load Regulation	ΔV_{LOAD}	Io=1.0mA ~ 20mA		3.0	25	mV
Temperature Stability	Ts			0.2		mV/°C
Total Output Variation	V_{REF}	Line, Load, Temperature	4.82		5.18	V
Output Noise Voltage	eN	F=10kHz ~ 10Hz, T _J =25°C		50		uV
Long Term Stability	S	T _A =125°C,1000Hrs		5		mV
Output Short Circuit Current	I _{sc}		-30	-85	-180	mA
OSCILLATOR SECTION	_			-		
		T _J =25°C	49	52	55	
Frequency	F	T _a =0°C ~ 70°C	48		56	kHz
		$T_J = 25^{\circ}C (R_T = 6.2k, C_T = 1.0nF)$	225	250	275	
Frequency Change with Voltage	$\Delta f_{OSC}/\Delta V$	12 ≤ V _{CC} ≤25V		0.2	1.0	%
Frequency Change with	$\Delta f_{OSC}/\Delta T$	0°C ≤T _A ≤70°C		0.5		%
Temperature						
Oscillator Voltage Swing(Peak to Peak)	V _{osc}			1.6		V
Discharge Current	Idischg	T _J =25°C 0°C ≤T _A ≤70°C	7.8 7.6	8.3	8.8 8.8	mA
ERROR AMPLIFIER SECTION						
Voltage Feedback Input	V_{FB}	Vo=2.5V	2.42	2.50	2.58	V
Input Bias Current	I _{I(BIAS)}	V _{FB} =5.0V		-0.1	-2.0	μА
Open Loop Voltage Gain	G_{VO}	2 ≤Vo≤4V	65	90		dB
Unity Gain Bandwidth	GB _W	T _J =25°C	0.7	1.0		MHz
Power Supply Rejection Ratio	PSRR	I2V≤Vcc≤25V	60	70		dB
Output Sink Current	I _{SINK}	Vo=1.1V,V _{FB} =2.7V	2.0	12		mA
Output Source Current	I _{SOURCE}	Vo=5.0V,V _{FB} =2.3V	-0.5	-1.0		mA
Output Voltage Swing High State	V_{OH}	V_{FB} =2.3V, R_L =15k to GND	5.0	6.2		V

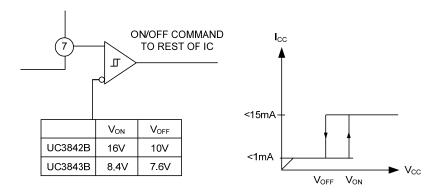
■ ELECTRICAL CHARACTERISTICS (Cont.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Voltage Swing Low State	V_{OL}	V_{FB} =2.7V, R_L =15k to V_{REF}		0.8	1.1	V
CURRENT SENSE SECTION						
Current Sense Input Voltage Gain	G_{V}	(Note 3,4)	2.85	3.0	3.15	V/V
Maximum Current Sense Input Threshold	$V_{\text{I(THR)}}$	(Note 3)	0.9	1.0	1.1	V
Power Supply Rejection Ratio	PSRR	12≤Vcc≤25V (Note 3)		70		dB
Input Bias Current	I _{I(BIAS)}			-2	-10	μА
Propagation Delay	t _{D(IN/OUT)}	Current Sense Input to Output		150	300	ns
OUTPUT SECTION						
Output Low Voltage	V_{OL}	I _{SINK} =20mA	20mA		0.4	V
Output Low Voltage	V OL	I _{SINK} =200mA		1.6	2.2	V
Output High Voltage	V_{OH}	I _{SOURCE} =20mA	13	13.5		V
Output Flight Voltage	VOH	I _{SOURCE} =200mA	12			V
Output Voltage with UVLO Activated	V _{OL (UVLO)}	V _{CC} =6.0V,I _{SINK} =1.0mA		0.1	1.1	V
Output Voltage Rise Time	t _R	T _J =25°C,C _L =1nF		50	150	ns
Output Voltage Fall Time	$t_{\scriptscriptstyle{F}}$	$T_J = 25^{\circ}C, C_L = 1nF$		50	150	ns
UNDER-VOLTAGE LOCKOUT SE	ECTION					
Charte in Three should	V_{THR}	UTC UC3842B	14.5	16	17.5	V
Startup Threshold		UTC UC3843B	7.8	8.4	9	V
Min. Operating Voltage After	V _{CC(MIN)}	UTC UC3842B	8.5	10	11.5	V
Turn-on(Vcc)		UTC UC3843B	7.0	7.6	8.2	V
PWM SECTION						
Duty Cycle MAX	DC		94	96		%
MIN	DC				0	%
Total DEVICE				-		
Power Startup Supply Current	I _{CC} +I _C	V _{CC} =6.5V for UC3843B V _{CC} =14V for UC3842B		0.3	0.5	mA
Power Operating Supply Current	I _{CC} +I _C	Note2		12	17	mA
Power Supply Zener Voltage	Vz	I _{CC} =25mA	30	36		V

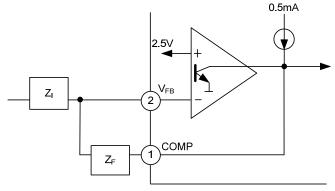

Note: 1. Maximum Package power dissipation limits must be observed.

- 2. Adject V_{CC} above the Startup threshold before setting to 15V.
- 3. This parameter is measured at the latch trip point with V_{FB} =0V.
- 4. Comparator gain is defined as : $G_V = \frac{\Delta V \text{ Output Compensation}}{\Delta V \text{ Current Sense Input}}$

■ TYPICAL APPLICATION CIRCUIT

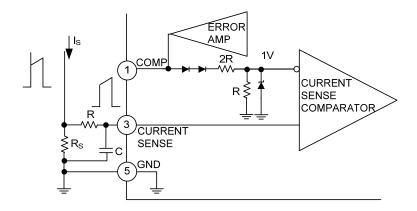

Open Loop Test Circuit

All of the parameters are not all tested in production, although been guaranteed. The timing and bypass capacitors must be connected to pin 5 in a single point ground very closely. To sample the oscillator waveform, the transistor and $5k\Omega$ potentiometer are used, and also can apply an adjustable ramp to I_{SENSE} pin.



Under Voltage Lockout

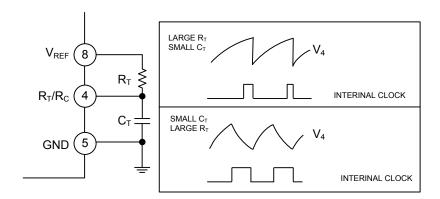
Under-Voltage Lock-Out: the output driver is biased to a high impedance state. To prevent activating the power switch with output leakage current, pin 6 should be shunted to ground with a bleeder resistor.


Error Amp Configuration

Error amp can source sink up to 0.5mA

■ APPLICATION INFORMATION(Cont.)

Current Sense Circuit

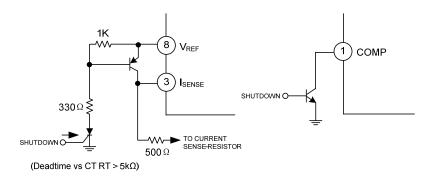


Peak current (I_S) is equaled:

 $I_{S(MAX)}=1.0V/R_S$

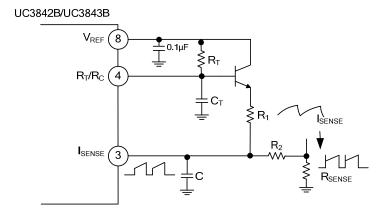
There should be a small RC filter to suppress switch transients.

Oscillator Waveforms and Maximum Duty Cycle


 C_T (Oscillator timing capacitor) can be charged by V_{REF} through R_T and discharged by an internal current source. At discharge time, the internal clock signal blanks the output to the low. Both oscillator frequency and maximum duty cycle can be determined by Selection of R_T and C_T . All charge and discharge times can be calculated by the next formulas:

$$t_C$$
=0.55 R_T C_T

$$t_{D} = R_{T}C_{T}I_{n}\left(\frac{0.0063R_{_{T}} - 2.7}{0.0063R_{_{T}} - 4}\right)$$


APPLICATION INFORMATION(Cont.)

Shutdown Techniques

The UTC **UC3842B's** shutdown can be accomplished by two ways: raise pin 3 above 1V; or pull pin 1 below a voltage two diode drops above ground. Either method can cause the PWM comparator's output to be high. Because the PWM latch is reset dominant, the output will remain low until the next clock cycle after the shutdown condition at pins 1 and/or 3 is removed.

Slope Compensation

■ TYPICAL CHARACTERISTICS

Figure 3. Oscillator Discharge Current Vs. Temperature

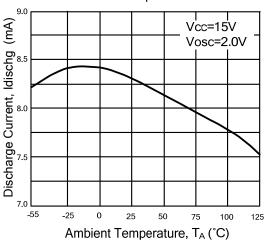


Figure 5. Error Amp Small Signal Transient Response

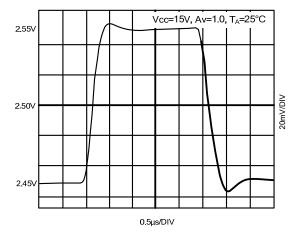


Figure 2 . Output Deadtime Vs. Oscillator Frequency

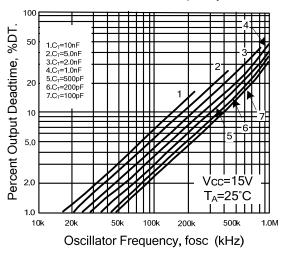


Figure 4. Maximum Output Duty Cycle
Vs. Timing Resistor

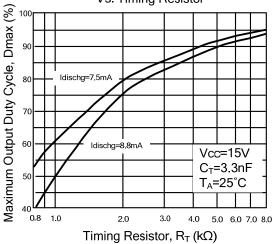
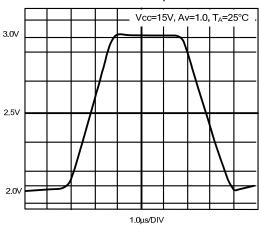



Figure 6. Error Amp Large Signal Transient Response

■ TYPICAL CHARACTERISTICS(Cont.)

Figure 7. Error Amp Open Loop Gain Phase Vs. Frequency

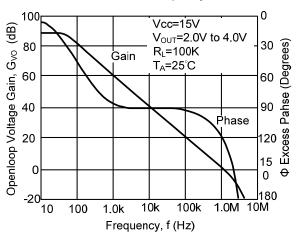


Figure 8. Current Sense Input Threshold Vs. Error Amp Output Voltage

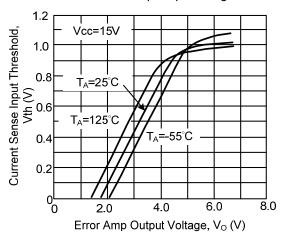


Figure 9. Reference Voltage Change Vs. Source Current

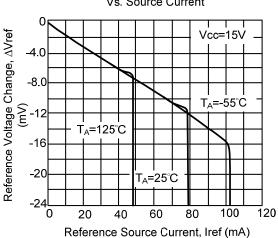


Figure 10. Reference Short Circuit Current Vs. Temperature

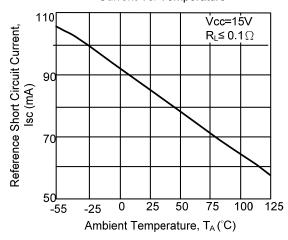


Figure 11. Reference Load Regulation

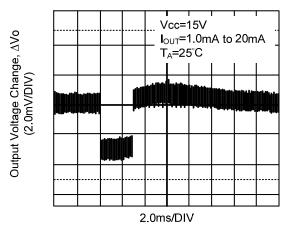
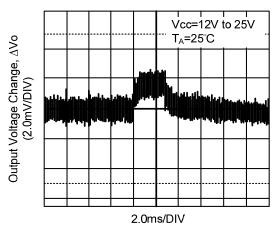



Figure 12. Reference Line Regulation

■ TYPICAL CHARACTERISTICS(Cont.)

Figure 13. Outrput Saturation Voltage Versus Load Current

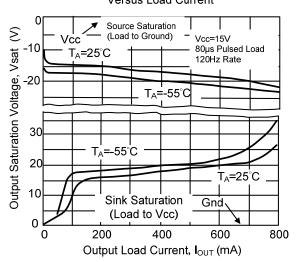


Figure 14. Output Waveform

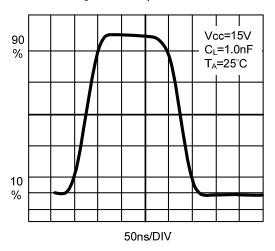
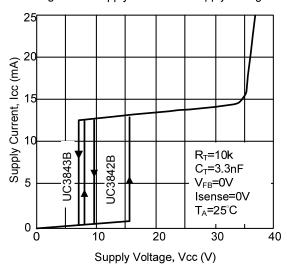


Figure 15. Output Cross Conduction


Vcc=30V

C_L=15pF

T_A=25°C

Algorithm Conduction

Figure 16. Supply Current vs. Supply Voltage

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.